

Alzheimer's

Dementia

Alzheimer's & Dementia 15 (2019) 76-92

Featured Article

Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome

Siamak MahmoudianDehkordi^{a,1}, Matthias Arnold^{a,b,1}, Kwangsik Nho^{c,1}, Shahzad Ahmad^d, Wei Jia^{e,f}, Guoxiang Xie^e, Gregory Louie^a, Alexandra Kueider-Paisley^a, M. Arthur Moseley^g, J. Will Thompson^g, Lisa St John Williams^g, Jessica D. Tenenbaum^h, Colette Blachⁱ, Rebecca Baillie^j, Xianlin Han^k, Sudeepa Bhattacharyya^l, Jon B. Toledo^m, Simon Schaffererⁿ, Sebastian Kleinⁿ, Therese Koalⁿ, Shannon L. Risacher^c, Mitchel Allan Kling^o, Alison Motsinger-Reif^p, Daniel M. Rotroff^p, John Jack^p, Thomas Hankemeier^q, David A. Bennett^r, Philip L. De Jager^s, John Q. Trojanowski^t, Leslie M. Shaw^t, Michael W. Weiner^u, P. Murali Doraiswamy^{a,v,w}, Cornelia M. van Duijn^d, Andrew J. Saykin^{c,**}, Gabi Kastenmüller^{b,x,*}, Rima Kaddurah-Daouk^{a,v,w,***}, for the Alzheimer's Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium

^aDepartment of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA

^bInstitute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ^cDepartment of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA ^dDepartment of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands

^eUniversity of Hawaii Cancer Center, Honolulu, HI, USA

^fShanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China

^gDuke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, USA
^hDepartment of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
ⁱDuke Molecular Physiology Institute, Duke University, Durham, NC, USA
^jRosa & Co LLC, San Carlos, CA, USA

^kUniversity of Texas Health Science Center at San Antonio, San Antonio, TX, USA

^lDepartment of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA

^mDepartment of Neurology, Houston Methodist Hospital, Houston, TX, USA

ⁿBIOCRATES Life Sciences AG, Innsbruck, Austria

^oBehavioral Health Service, Crescenz VA Medical Center and Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

^pBioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA

^qDivision of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, RA Leiden, The Netherlands

^rRush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA

piversity College of Physicians and Surgeons Department of Neurology, Center for Translational & Computational Neurology, N.

^sColumbia University College of Physicians and Surgeons Department of Neurology, Center for Translational & Computational Neuroimmunology, New York, NY, USA

¹Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

"Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA Medical Center/University of California San Francisco, San Francisco, CA, USA

^vDuke Institute of Brain Sciences, Duke University, Durham, NC, USA

^wDepartment of Medicine, Duke University, Durham, NC, USA

^xGerman Center for Diabetes Research (DZD), Neuherberg, Germany

E-mail addresses: asaykin@iupui.edu (A.J.S.), g.kastenmueller@helmholtz-muenchen.de (G.K.), kaddu001@mc.duke.edu or rima.kaddurahdaouk@duke.edu (R.K-D.)

¹Equal contributors.

^{*}Corresponding author. Tel.: +49-89-3187-3578; Fax: +49 89 3187-3585.

^{**}Corresponding author. Tel.: 317-963-7229; Fax: +1-317-963-7547.

^{***}Corresponding author. Tel.: +1-919-684-2611; Fax: +1-919-681-7668.

Abstract

Introduction: Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD).

Methods: Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple testing. **Results:** In AD compared to cognitively normal older adults, we observed significantly lower serum

concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α -dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response–related genes implicated in AD showed associations with BA profiles.

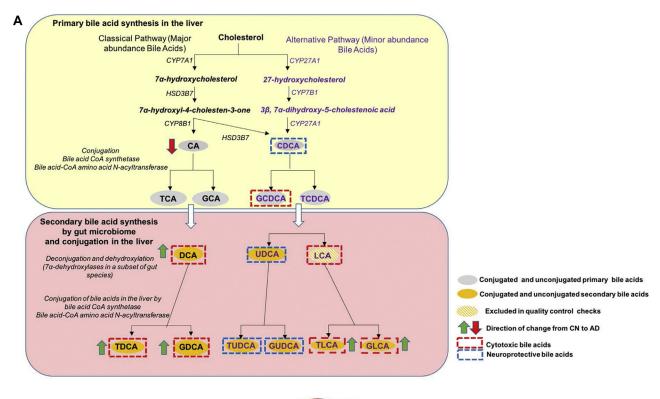
Discussion: We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in the pathogenesis of AD.

© 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Metabolomics; Metabolome; Lipidomics; Alzheimer's disease; Gut microbiome; Gut-liver-brain axis; Atlas for Alzheimer; Genetic variants; Immunity; Inflammation

1. Introduction


Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia in old age affecting over 40 million people worldwide [1]. There are currently no therapies to prevent or slow down AD progression, highlighting our incomplete knowledge of disease mechanisms and the need for new drug targets. A large number of biochemical processes are affected in AD and genes implicated in AD highlight the possible roles for lipid processing, immune function, phagocytosis, (innate) immunity and neurotransmitter function, and biological pathways that may affect metabolism [2,3]. Recent AD hypotheses implicate viral and bacterial contributions to disease pathogenesis [4–6].

Bidirectional biochemical communication between the brain and the gut contribute to a variety of neurodegenerative and psychiatric diseases [7–10]. The gut microbiome and the host collaboratively produce a large array of small molecules that impacts human health [11,12]. Recently, a role for the gut microbiome in motor dysfunction in Parkinson's disease has been highlighted [13], and several animal models of AD showed a possible role of gut bacteria in amyloid-β pathology [14,15]. The APP transgenic mouse model of AD had a drastically altered gut microbiome composition compared to wild-type mice [15]. Other studies linked proinflammatory bacteria, such as gram-negative producers of neurotoxic lipopolysaccharides, to brain amyloidosis and

systemic inflammation, a central feature of AD [16,17]. These studies suggest microbial dysbiosis or imbalance could potentially contribute to AD pathogenesis.

Cholesterol metabolism in the liver is thought to play a key role in AD [18]. In fact, many cholesterol metabolism-related genes (e.g., BIN1, CLU, PICALM, ABCA7, ABCG1, and SORL1) are among the top AD susceptibility loci identified by genome-wide association studies [2,19]. Cholesterol is cleared through production of bile acids (BAs). Primary BAs, chenodeoxycholic acid (CDCA) and cholic acid (CA), are synthesized from cholesterol in the liver, conjugated with glycine or taurine, secreted into the gallbladder via the bile salt export pump, and transported to the intestine to be metabolized by gut bacteria (Fig. 1). Intestinal anaerobic bacteria deconjugate the liver-derived BAs through the action of bile salt hydrolases to their respective free BAs. Subsequently, anaerobe bacteria convert primary BAs to the secondary BAs. That is, CA is converted to deoxycholic acid (DCA). CDCA is converted to lithocholic acid (LCA) and ursodeoxycholic acid through 7α or 7β -dehydroxylation, respectively [20,21]. In the terminal ileum and colon, BAs are reabsorbed by the enterocytes and released into the portal vein for return to the liver where they are conjugated to produce their glycine and taurine forms.

Beyond BAs' role in cholesterol clearance, BAs are major regulators for maintaining energy homeostasis through

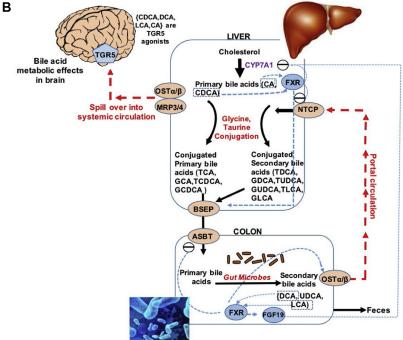


Fig. 1. Bile acid synthesis and cholesterol clearance pathway. Regulation of bile acid synthesis by feedback mechanism and bile acid transport through enter-ohepatic circulation (A and B). In the liver, the bile acids (CDCA, DCA, LCA, CA) activate FXR that inhibits (via a repressor SHP, not shown here) the rate-limiting enzyme CYP7A1. The bile acids via FXR/SHP also inhibit the influx transporter NTCP and induce BSEP and canalicular bile acid secretion. In the intestine, bile acids, via FXR, inhibit the uptake transporter ASBT, decreasing absorption and increasing basolateral secretion into portal circulation by inducing OST α and β . Bile acid activated FXR in the intestine, which also exerts inhibition on CYP7A1 in the liver via FGF19 pathway. At the basolateral membrane of hepatocytes, transporters OST α and β , and also MRP3 and MRP4, secrete bile acids into the systemic circulation. Abbreviations: ASBT, apical sodium-dependent bile acid transporters; BSEP, bile salt export pump; CA, cholic acid; FXR, farnesoid X receptor; LCA, lithocholic acid; NTCP, sodium/taurocholate co-transporting polypeptide; SHP, small heterodimer partner.

binding to nuclear receptors, including FXR and LXR among others. BAs also modulate the gut microbiome [22,23] and seem to be indicators of gut dysbiosis. Both primary and secondary BAs are present in the brains of mice and possibly humans with evidence that they cross the blood-brain barrier [24–29]. Some BAs such as ursodeoxycholic acid exert beneficial effects while others are known to be cytotoxic [30–34]. In particular, DCA's toxicity has been associated with modulating apoptosis involving mitochondrial pathways in a variety of tissues and cell types [35–38].

In recent pilot human studies, BA profiles were shown to be affected in AD [26,38–41]. Here, we used a targeted metabolomics approach to evaluate BA profiles in a large cohort of 1464 individuals enrolled in the AD Neuroimaging Initiative (ADNI) where rich clinical, imaging, and genetic data exist. A schematic representation of study design is shown in Fig. 2. We used these data to address the following:

- 1. Investigate if BA profiles are altered in mild cognitive impairment (MCI) and AD patients and if these differences are related to cognitive decline.
- 2. Use ratios of BAs to pinpoint possible enzymatic alterations in the liver and in the gut microbiome that directly contribute to altered BA profile.
- Investigate whether immune-related AD genomewide significant genes affect levels of BAs in circulation as markers for altered gut microbiome function.

In a subsequent study, we evaluated correlations between BAs and ATN (amyloid, tau, and neurodegenerative) biomarkers of AD including cerebrospinal fluid (CSF) biomarkers, brain atrophy, and brain glucose metabolism.

2. Methods

2.1. Study cohorts and samples

2.1.1. ADNI baseline samples

Data used in the preparation of this article were down-loaded from the ADNI database (http://adni.loni.usc.edu/). The ADNI studies have recruited over 1500 adults, ages 55 to 90, consisting of cognitively normal older individuals (CN), individuals with subjective memory concerns (SMC), subjects with early (EMCI) or late mild cognitive impairment (LMCI), and patients with early probable AD dementia. Subjects categorized as SMC were excluded in this study. For key clinical and demographic variables of ADNI participants included in this study, see Table 1 and 2.

2.1.2. The Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP) for replication of key finding

The ROS/MAP studies are both longitudinal cohort studies of aging and AD at Rush University and are designed to be used in joint analyses to maximize sample size. ROS enrolled individuals from religious orders (nuns, priests, brothers) across the United States [42]. MAP was designed to complement the ROS study by using a similar structure and design as ROS, but enrolling participants with a wider range of life experiences and socioeconomic status from the Chicago, IL metropolitan area [43]. The entire ROS/MAP cohort consists of approximately 3300 participants,

Step 1: Identify serum bile acids signature of AD in ADNI study

Number of bile acids: 15; N=1464 (CN=370; Early MCI=284; Late MCI=505; AD=305)

Step 2: Test serum metabolites associations with AD endophenotypes and progression from MCI to AD MCI Subjects that converted to AD dementia in 4 years after baseline were labeled as MCI-Converter; N= 538 MCI Non-Converter; N=251 MCI-Converter

Step 3: Model and test metabolite ratios to determine which enzymatic processes in BA metabolism may underlie the differences noted in AD

Step 4: Replication of key finding (DCA:CA) in serum and brain in ROS/MAP study

Postmortem brain samples: N=51 CN; N=31 MCI; N=27 AD Serum samples: N=446 CN; N=109 MCI; N=11 AD

Step 5: Test selected metabolites associations with AD common immune-related risk variants

ADNI: N=817

Rotterdam Study: N=488 dementia-free subjects

Step 6: Examine the association of DCA with SNPs in atlas of genetic influences on human blood metabolites (Shin et. al, 2014) and functional annotation of suggestive significant results

N~7,800 healthy individuals

Fig. 2. Schematic representation of study design. Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; BA, bile acid; CA, cholic acid; CN, cognitively normal older individuals; DCA, deoxycholic acid; MCI, mild cognitive impairment; ROS-MAP, Religious Orders Study and the Rush Memory and Aging Project; SNP, single-nucleotide polymorphism.

Table 1
Demographics of ADNI participants stratified by baseline diagnosis*

Variable	N	CN (N = 370)	EMCI ($N = 284$)	LMCI (N = 505)	AD $(N = 305)$	P value†
Age	1464	74.58 (5.71)	71.12 (7.51)	73.95 (7.59)	74.70 (7.79)	.001
Sex: female, no. (%)	1464	190 (51%)	130 (46%)	197 (39%)	139 (46%)	.004
Education, years	1464	16.28 (2.92)	15.95 (2.66)	15.87 (2.90)	15.16 (3.00)	.001
BMI (kg/m ²)	1461	27.05 (4.46)	28.06 (5.41)	26.54 (4.25)	25.83 (4.69)	.001
\geq 1 APOE ϵ 4 allele, no. (%)	1464	104 (28%)	121 (43%)	273 (54%)	202 (66%)	.001
ADAS-Cog13‡	1455	9.19 (4.17)	12.64 (5.40)	18.67 (6.62)	29.67 (8.20)	.001

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; BMI, body mass index; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; ADAS-Cog13, Alzheimer Disease Assessment Scale 13-item cognitive subscale.

more than 1500 of whom have come to autopsy (www.radc.rush.edu). We measured a subset of serum BAs in 566 subjects (446 CN, 109 MCI, and 11 AD), as well as a subset of BAs in postmortem brain samples from the dorsolateral prefrontal cortex of 111 subjects with brain pathology measured (51 CN, 31 MCI, and 27 AD at time of death), of whom 93 had serum BA measurements. Key demographic characteristics of the ROS/MAP cohort are in Supplementary Table 1.

2.1.3. Rotterdam study (RS)

RS was used to examine the association of BAs with AD genetic variants. RS is a prospective population-based study [44]. At the baseline examination in 1990–1993, 7983 subjects ≥55 years of age were recruited from the Ommoord district of Rotterdam (RS-I). All the study participants were extensively interviewed and physically examined at baseline and after every 3 to 4 years. During 2000 to 2001, the baseline cohort (RS-I) was expanded with 3011 subjects ≥55 years of age, who were not yet part of RS-I (RS-II). In this analysis, fasting serum BAs were measured for 488 dementia-free subjects with mean (SD) age of 73.1(6.3) from RS-I using Metabolon platform (Durham, North Carolina) as described previously [45] (see Supplementary Table 2 for demographics).

Table 2
Demographics of ADNI participants stratified by MCI progression to AD*

	MCI-nonconverter	MCI-converter	
N	(N = 538)	(N = 251)	P value [†]
789	72.47 (7.90)	73.91 (7.08)	.01
789	41% (223)	41% (104)	1
789	15.95 (2.85)	15.79 (2.76)	.43
788	27.37 (4.80)	26.47 (4.61)	.005
789	41% (223)	68% (171)	.001
786	14.26 (6.04)	21.31 (5.94)	.29
	789 789 789 788 789	N (N = 538) 789 72.47 (7.90) 789 41% (223) 789 15.95 (2.85) 788 27.37 (4.80) 789 41% (223)	N (N = 538) (N = 251) 789 72.47 (7.90) 73.91 (7.08) 789 41% (223) 41% (104) 789 15.95 (2.85) 15.79 (2.76) 788 27.37 (4.80) 26.47 (4.61) 789 41% (223) 68% (171)

Abbreviations: AD, Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; ADAS-Cog13, Alzheimer Disease Assessment Scale 13-item cognitive subscale; MCI, mild cognitive impairment.

2.2. Sample collection and quantification of BAs

Targeted metabolomics profiling was performed to measure concentrations of 20 BA metabolites in serum samples of the ADNI cohorts. Morning fasting serum samples from the baseline visit were collected and aliquoted as described in the ADNI standard operating procedures. BA quantification was performed by liquid chromatography tandem mass spectrometry using the Biocrates Life Sciences Bile Acids Kit (BIOCRATES Life Science AG, Innsbruck, Austria) according to manufacturer's instructions (see Table 3 for list of BAs, abbreviations, and their levels across diagnosis groups).

In the ROS/MAP, quantification of BA concentrations in 566 serum samples and 111 postmortem brain samples was performed at the University of Hawaii cancer center using ultra-performance liquid chromatography coupled to a tandem mass spectrometry (UPLC-MS/MS) system (ACQ-UITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA) [46].

In the RS study, serum BAs were measured in 488 serum samples using the nontargeted Metabolon platform (Durham, North Carolina).

2.3. Quality control of BA profiles

Metabolomics laboratory staff were blinded to diagnosis and pathological data in all the studies. In ADNI, after unblinding and data release, metabolite profiles went through quality-control (QC) checks and data preprocessing including batch-effect adjustment, missing value imputation, and log-transformation (Supplementary Methods and Supplementary Table 3). After QC correction, the data set included 15 BAs (five BAs did not pass QC criteria) for a total of 1464 subjects (after excluding 99 SMC). The preprocessed BA values after QC were used for subsequent association analyses directly or were adjusted to take into account the effect of medications on BA levels [47]. The list of medications selected for adjustment for each BA is shown in Supplementary Table 7. We performed all analyses using both medication-adjusted and -unadjusted BA levels, results derived from medication-adjusted data and the adjustment

^{*}Data are reported as mean (standard deviation) unless otherwise indicated. Bolded values indicate statistical significance.

[†]Based on two-sample t tests, or Pearson χ^2 tests.

[‡]Score explanations: ADAS-Cog13 range, 0 (best) to 85 (worst).

^{*}MCI subjects that converted to AD dementia in 4 years after baseline were labeled as MCI converter.

[†]Based on 2-sample *t*-tests or Pearson χ^2 tests.

Table 3
Levels of primary and secondary bile acids measured in the ADNI cohort stratified by clinical diagnosis*

Bile acid	Category	N†	CN (N = 370)	EMCI ($N = 284$)	LMCI (N = 505)	AD $(N = 305)$
CA	Primary	1446	0.221 (0.024)	0.155 (0.021)	0.192 (0.021)	0.135 (0.025)
CDCA	Primary	1357	0.285 (0.042)	0.241 (0.034)	0.288 (0.033)	0.216 (0.033)
GCA	Primary conjugated	1463	0.236 (0.019)	0.234 (0.021)	0.239 (0.014)	0.297 (0.037)
GCDCA	Primary conjugated	1464	0.658 (0.035)	0.724 (0.059)	0.710 (0.037)	0.806 (0.049)
TCA	Primary conjugated	1020	0.068 (0.008)	0.057 (0.006)	0.068 (0.006)	0.066 (0.009)
TCDCA	Primary conjugated	1426	0.090 (0.006)	0.088 (0.007)	0.091 (0.006)	0.097 (0.008)
TMCA	Primary conjugated	1146	0.012 (0.001)	0.011 (0.001)	0.014 (0.002)	0.014 (0.002)
DCA	Secondary	1445	0.526 (0.041)	0.574 (0.043)	0.529 (0.026)	0.627 (0.045)
UDCA	Secondary	1111	0.065 (0.007)	0.072 (0.011)	0.091 (0.010)	0.087 (0.012)
GDCA	Secondary conjugated	1439	0.440 (0.034)	0.488 (0.038)	0.502 (0.031)	0.672 (0.054)
TDCA	Secondary conjugated	1430	0.058 (0.006)	0.059 (0.005)	0.065 (0.005)	0.077 (0.006)
GLCA	Secondary conjugated	1037	0.027 (0.002)	0.034 (0.003)	0.030 (0.002)	0.039 (0.003)
TLCA	Secondary conjugated	1008	0.005 (0.0002)	0.005 (0.0003)	0.005 (0.0003)	0.006 (0.0005)
GUDCA	Secondary conjugated	1401	0.115 (0.010)	0.114 (0.012)	0.129 (0.012)	0.136 (0.015)
TUDCA	Secondary conjugated	1369	0.008 (0.001)	0.008 (0.001)	0.008 (0.001)	0.008 (0.001)

Abbreviations: AD,Alzheimer's disease; ADNI, Alzheimer's Disease Neuroimaging Initiative; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; CA, cholic acid; CDCA, chenodeoxycholic acid; GCA, glycocholic acid; GCDCA, glycocholic acid; TCA, taurocholic acid; TCDCA, taurocholic acid; TMCA, tauromuricholic acid; DCA, deoxycholic acid; UDCA, ursodeoxycholic acid; GDCA, glycodeoxycholic acid; TDCA, taurodeoxycholic acid; GLCA, glycolithocholic acid; TLCA, taurolithocholic acid; GUDCA, glycoursodeoxycholic acid; TUDCA, tauroursodeoxycholic acid.

process are described in Supplementary Methods and its accompanying tables.

In both RS and ROS/MAP, missing metabolite levels were imputed using half of the limit of detection. Log-transformed values were used in subsequent analyses.

2.4. Clinical outcomes

For ADNI data, continuous response variables included the modified Alzheimer Disease Assessment Scale 13-item cognitive subscale (ADAS-Cog13; range, 0 [best] to 85 [worst] points), an index of general cognitive functioning. Categorical response variables included clinical diagnosis at baseline and MCI conversion (MCI-nonconverter, MCIconverter). For the ROS/MAP cohort, cognition was measured using a battery of tests (details are published [48–51]). A composite measure of global cognition was created by averaging the z-scores of all tests as previously described [51]. Mean and standard deviation at baseline were used to compute z-scores. A negative z-score means that an individual has an overall score that is lower than the average of the entire sample at baseline. Cognitive tests were used from the same cycle as serum, and proximate to death for brain.

2.5. Genotype and whole-genome sequencing data

Whole-genome sequencing: For 817 ADNI participants, whole-genome sequencing was performed on blood-derived genomic DNA. Samples were sequenced on the Illumina HiSeq2000 using paired-end read chemistry and read-length of 100 bp at 30–40X coverage. For data processing and QC, an established analysis pipeline based on GATK

was used. The QC steps included participant sex check, participant identity check, and variant quality check of the Illumina-generated VCF files (see Saykin et al., 2015 for details [52]).

DNA genotyping in the participants of the RS cohort was performed using 550K, 550K duo, or 610K Illumina arrays at the internal genotyping facility of the Erasmus Medical Center, Rotterdam. Study samples with excess autosomal heterozygosity, call rate <97.5%, ethnic outliers, and duplicate or family relationships were excluded during quality control analysis. Genotype exclusion criteria further included call rate <95%, Hardy-Weinberg equilibrium $P < 1.0 \times 10^{-6}$, and Minor Allele Frequency <1%. Genetic variants were imputed to the Haplotype Reference Consortium reference panel (version 1.0) [53] using the Michigan imputation server [54].

Reference genetic associations with BA profiles in healthy individuals were obtained from supplementary data of the atlas of genetic influences on blood metabolites [45]. To obtain genome-wide genetic associations with DCA, we considered all suggestive significant results with $P < 1.0 \times 10^{-5}$. Gene and complex trait annotations of the 13 resulting genetic loci were performed using the SNiPA tool v3.2 [55] and the NHGRI-EBI Catalog of published genome-wide association studies (www.ebi.ac.uk/gwas; accessed 02/01/2018, version 1.0) [56]. Lookup of AD genetic associations for DCA candidate variants was performed using the IGAP repository [2].

2.6. Statistical analysis

Differences of demographic, clinical, and cognitive measurements among the clinical diagnostic groups were

^{*}Values represent µM in mean (standard error of the mean).

[†]Number of nonmissing measurements.

Table 4
Cross-sectional association of bile acids with clinical diagnosis and cognition in the ADNI study*

Bile acid	CN versus AD ($n = 673$) OR (95% CI); P value [†]	ADAS-Cog13 ($n = 1453$) β (95% CI); P value:
CA	0.85 (0.78, 0.92); 1.56E-04	-0.04 (-0.07, -0.01); 2.81E-03
CDCA	0.94 (0.87, 1.01); 7.19E-02	-0.02 (-0.04 , 0.00); $1.07E-01$
GCA	1.07 (0.96, 1.18); 2.03E-01	0.01 (-0.02, 0.05); 4.36E-01
GCDCA	1.15 (1.02, 1.29); 2.07E-02	0.06 (0.02, 0.09); 4.60E-03
TCA	1.03 (0.94, 1.12); 5.32E-01	-0.01 (-0.03 , 0.03); $7.92E-01$
TCDCA	1.04 (0.94, 1.15); 4.29E-01	0.02 (-0.02, 0.05); 3.39E-01
TMCA	1.09 (1.00, 1.18); 4.46E-02	0.029 (0.00, 0.06); 4.21E-02
DCA	1.24 (1.11, 1.39); 1.61E-04	0.05 (0.01, 0.08); 9.26E-03
UDCA	0.96 (0.90, 1.03); 2.41E-01	-0.01 (-0.03 , 0.01); 2.44 E- 01
GDCA	1.30 (1.17, 1.43); 4.20E-07	0.07 (0.04, 0.10); 1.05E-05
TDCA	1.19 (1.08, 1.30); 3.26E-04	0.05 (0.02, 0.08); 2.39E-03
GLCA	1.33 (1.20, 1.48); 9.21E-08	0.07 (0.04, 0.11); 1.97E-05
TLCA	1.19 (1.07, 1.31); 9.53E-04	0.06 (0.03, 0.1); 3.18E-04
GUDCA	1.09 (1.00, 1.19); 5.39E-02	0.03 (-0.00, 0.06); 6.04E-02
TUDCA	1.08 (0.96, 1.20); 1.86E-01	0.01 (-0.02, 0.05); 4.85E-01

Abbreviations: AD, Alzheimer's disease; ADAS-Cog13, Alzheimer Disease Assessment Scale 13-item cognitive subscale; ADNI, Alzheimer's Disease Neuroimaging Initiative; CA, cholic acid; CDCA, chenodeoxycholic acid; CN, cognitively normal; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic acid; TMCA, tauromuricholic acid; DCA, deoxycholic acid; UDCA, ursodeoxycholic acid; GDCA, glycodeoxycholic acid; TLCA, taurolithocholic acid; GUDCA, glycoursodeoxycholic acid; TUDCA, tauroursodeoxycholic acid.

evaluated using two-sample *t*-test (for continuous variables) and Pearson chi-squared test (for categorical variables). All analyses were performed in a metabolite-wise manner and Bonferroni-adjusted critical values were used to assess statistical significance. All models included age at baseline, sex, *APOE* ε4, and log₁₀-transformed body mass index (BMI). For cognition, number of years of education was added as an additional covariate.

Separate binary logistic regression models were conducted to examine cross-sectional association of each metabolite with baseline diagnosis (six models per metabolite). We performed logistic regression models to compare BA levels between the MCI-nonconverter and MCI-converter groups. Cox proportional hazard models were used to evaluate the association of metabolite levels with progression from MCI (combined EMCI and LMCI subjects) to AD. The cross-sectional association of ADAS-Cog13 with BAs was assessed using linear regression models with square root of ADAS-Cog13 as the dependent variable.

In ROS/MAP, one sample per individual was used. Linear regression models with global cognition score as dependent variable and metabolites as independent variables were used to assess the association of serum BAs with cognition, while adjusting for sex, age, $APOE\ \varepsilon 4$, and years of education. Similar analyses were conducted for brain BAs separately.

We restricted our genetic variant analysis to singlenucleotide polymorphisms in genes involved in the immune response pathway that were significantly associated with AD genome-wide [2,57–59]. Selected genetic variant included rs616338-T(*ABI3*), rs143332484-T(*TREM2*), rs72824905-C(*PLCG2*), rs9331896-T(*CLU*), rs6656401-A(*CR1*), rs35349669-T(*INPP5D*), rs11771145-G(*EPHA1*), rs983392-A(*MS4A6A*), and rs190982-A(*MEF2C*). Associations of AD risk variants in immune-related genes with selected metabolic traits in ADNI and RS were computed using sex, age, and BMI as covariates.

3. Results

Characteristics of ADNI participants are depicted in Table 1 and 2. Baseline cognitive measurements were significantly different among diagnostic groups, as expected. AD patients were more often carriers of at least one APOE $\epsilon 4$ allele. In addition, ADAS-Cog13 scores were not significantly different between the MCI-converter and MCI-nonconverter groups. However, the proportion of APOE $\epsilon 4$ carriers was higher in the MCI-converter group.

3.1. Serum BA profiles are significantly altered in AD

The Bonferroni-corrected threshold for statistical significance was determined as $P < 4.76 \times 10^{-4}$ (0.05 divided by 15 metabolites times seven phenotypes including cognition). When we compared BA profile in AD to CN, we detected a significant decrease in levels of the primary BA, CA ($P = 1.56 \times 10^{-4}$). In contrast, a significant increase of bacterially produced secondary BA, DCA was noted ($P = 1.61 \times 10^{-4}$) along with several secondary conjugated

^{*}Statistically significant associations that passed Bonferroni correction are bolded.

 $^{^{\}dagger}$ Odds ratios and P values were obtained from logistic regressions. Models were corrected for age, sex, body mass index, and APOE ε4 status; Bonferroniadjusted critical value was set to 5.76×10^{-4} (0.05 divided by 15 metabolites times seven phenotypes including cognition).

[†]Outcome: Square root of ADASCog-13 (0 [best] to 85 [worst]); models were corrected for age, sex, years of education, body mass index, and APOE ε4 status; Bonferroni-adjusted critical value was set to 2.17E-03.

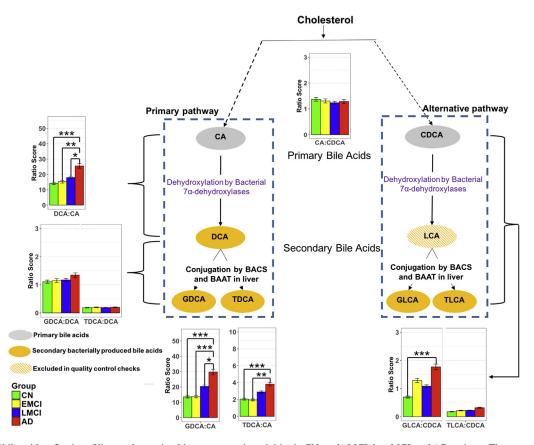


Fig. 3. Ratios of bile acids reflective of liver and gut microbiome enzymatic activities in CN, early MCI, late MCI, and AD patients. Three types of ratios were calculated to inform about possible enzymatic activity changes in Alzheimer's patients. These ratios reflect one of the following: (1) shift in bile acid metabolism from primary to alternative pathway; (2) changes in gut microbiome correlated with production of secondary bile acids; (3) changes in glycine and taurine conjugation of secondary bile acids. Color code: green: cognitively normal; yellow: EMCI; blue: LMCI; red: AD. Composition of selected ratios stratified by clinical diagnosis. Error bars indicate standard error of the means; asterisks indicate statistical significance (* $P < 10^{-3}$, ** $P < 10^{-4}$, and *** $P < 10^{-5}$). P values were estimated from logistic regression models and adjusted for age, sex, body mass index, and APOE &4 status. The significance level was adjusted for multiple testing according to Bonferroni method to 0.05/138 = 3.62E-4; LCA was excluded in the quality control steps. Abbreviations: AD, Alzheimer's disease; CN, cognitively normal older individuals; EMCI, early mild cognitive impairment; LCA, lithocholic acid; LMCI, late mild cognitive impairment; MCI, mild cognitive impairment.

BAs, GDCA, TDCA, and GLCA (Table 4). GDCA and GLCA were significantly associated with ADAS-Cog13 where higher levels indicated worse cognition. Comparing BA levels between AD and both MCI groups yielded similar results, while the comparison of BA levels between the CN and MCI groups did not reach statistical significance (Supplementary Table 4).

3.2. Ratios reflective of conversion of BAs by gut microbiome are significantly associated with AD and cognitive performance

To determine which enzymatic processes in BA metabolism may underlie the differences noted in AD, we investigated eight selected ratios reflective of enzymatic activities in the liver and the gut microbiome. These ratios included the following:

1. The CA:CDCA ratio was selected to test if a possible shift in BA synthesis from the primary to the alternative BA pathway occurs in the liver.

- 2. Ratios of secondary to primary BAs (DCA:CA, GLCA:CDCA, and TLCA:CDCA) to investigate differences in gut microbiome enzymatic activity leading to altered production of secondary BAs. Because LCA was excluded in QC steps, the GLCA:CDCA and TLCA:CDCA ratios were used as proxies for the LCA:CDCA ratio.
- 3. GDCA:DCA and TDCA:DCA ratios were used to test if the observed secondary BA dysregulation is related to enzymatic differences related to their taurine and glycine conjugation.

Here, we considered associations as significant at a Bonferroni-corrected $P < 3.11 \times 10^{-4}$ (0.05 divided by all 23 metabolic traits times seven phenotypes, which include cognition). The ratio of the primary BAs (CA:CDCA) showed no significant association with AD. Yet, for the ratio of DCA:CA (i.e., the conversion of unconjugated primary to unconjugated secondary BA), we observed a highly significant association with AD diagnosis

Table 5
Ratios of bile acids reflective of gut microbiome and liver enzymatic activities and their correlation with disease status and cognitive function*

Ratios informative about metabolic processes	Ratios calculated	CN versus AD ($n = 673$) OR (95% CI); P value†	ADAS-Cog13 ($n = 1453$) β (95% CI); P value‡
Bile acid synthesis: primary versus alternative pathway	CA:CDCA	0.87 (0.77, 0.97); 1.67E-02	-0.03 (-0.07, 0.01); 1.27E-01
Conversion from primary to secondary BA by the gut	DCA:CA	1.25 (1.16, 1.35); 1.53E-08	0.05 (0.03, 0.08); 1.05E-05
microbiome	GDCA:CA	1.24 (1.16, 1.33); 8.53E-10	0.06 (0.04, 0.08); 1.20E-07
	TDCA:CA	1.16 (1.10, 1.24); 9.83E-07	0.04 (0.02, 0.06); 5.40E-05
	GLCA:CDCA	1.16 (1.09, 1.23); 3.61E-06	0.04 (0.02, 0.06); 9.15E-05
	TLCA:CDCA	1.09 (1.03, 1.16); 1.60E-03	0.03 (0.01, 0.05); 1.50E-03
Glycine or taurine conjugation of secondary bile acids by liver	GDCA:DCA	1.16 (1.02, 1.31); 2.41E-02	0.05 (0.02, 0.10); 5.49E-03
enzymes	TDCA:DCA	1.02 (0.93, 1.11); 7.40E-01	0.01 (-0.02, 0.04); 4.15E-01

Abbreviations: AD, Alzheimer's disease; CN, cognitively normal; ADAS-Cog13, Alzheimer Disease Assessment Scale 13-item cognitive subscale; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GDCA, glycodeoxycholic acid; TDCA, taurodeoxycholic acid; GLCA, glycolithocholic acid; TLCA, taurolithocholic acid.

*Several ratios were calculated to inform about possible enzymatic activity changes in Alzheimer's patients. These ratios reflect (1) shift in bile acid metabolism from primary to alternative pathway; (2) changes in gut microbiome correlated with production of secondary bile acids; (3) changes in glycine and taurine conjugation of secondary bile acids.

[†]Outcome: Baseline diagnosis; odds ratios and *P* values were obtained from logistic regressions. Models were corrected for age, sex, body mass index, and APOE ε4 status; Bonferroni-adjusted critical value was set to 1.04E-03 based on six possible pairwise comparison of diagnosis groups (CN, EMCI, LMCI, and AD) for eight ratios.

[†]Outcome: Square root of Alzheimer Disease Assessment Scale 13-item cognitive subscale (0 [best] to 85 [worst]); models were corrected for age, sex, years of education, body mass index, and APOE ε 4 status; Bonferroni-adjusted critical value was set to .11 \times 10⁻⁴ (0.05 divided by all 23 metabolic traits times seven phenotypes, which include cognitive function). Statistically significant associations that passed Bonferroni correction are bolded.

 $(P = 1.53 \times 10^{-8})$. Ratios between primary and secondary conjugated BAs showed the same effect and direction, including GDCA:CA $(P = 8.53 \times 10^{-10})$, TDCA:CA $(P = 9.83 \times 10^{-7})$, and GLCA:CDCA $(P = 3.61 \times 10^{-6})$.

Ratios modeling the glycine and taurine conjugation step of DCA (i.e., GDCA:DCA, TDCA:DCA) were not significantly associated with diagnosis (Fig. 3 and Table 5).

Four ratios (including DCA:CA and GLCA:CDCA) were significantly associated with ADAS-Cog13. For the ratios, we observed the same pattern as AD diagnosis, with higher ratios of secondary to primary BAs being highly significantly associated with worse cognitive performance, while neither conjugation nor a shift between primary and alternative BA pathways in the liver was significantly linked to cognition (Table 5).

3.3. Serum BA levels were associated with progression from MCI to AD in ADNI

The nine metabolites and ratios associated with diagnosis were further investigated to assess their relationship with progression from MCI to AD. Out of 789 MCI (EMCI and LMCI) patients with mean (SD) follow-up 3.94 (2.35), 32.2% progressed to AD dementia in 4 years (labeled as MCI converter [n=251] vs. those who did not progress MCI nonconverter [n=538]). BA profiles were compared between the two groups using logistic regression models with conversion status as dependent variable and metabolite as independent variable. Models were adjusted for age, sex, BMI, baseline ADAS-Cog13 score, and APOE $\varepsilon 4$. The Bonferroni-corrected threshold for statistical significance was determined as $P < 5.56 \times 10^{-3}$ (0.05 divided by nine metabolites and ratios). We noted a decrease in CA levels ($P = 9.12 \times 10^{-4}$) and an increase in ratios of GDCA:CA ($P = 1.63 \times 10^{-3}$)

and TDCA:CA ($P = 1.72 \times 10^{-3}$) in MCI converters (Fig. 4 and Supplementary Table 5). Further survival analysis also revealed that levels of CA (hazard ratio [HR], 0.92; $P = 3.79 \times 10^{-3}$), GDCA:CA (HR, 1.07; $P = 2.81 \times 10^{-3}$), and TDCA:CA (HR, 1.06; $P = 3.19 \times 10^{-3}$) ratios predicted MCI progression (Fig. 4).

3.4. Replication of association between cognition and DCA:CA ratio in serum and brain from ROS/MAP

To confirm the associations observed in ADNI, we used an independent cohort of older adults (ROS/MAP) with measures of BAs in serum and brain to replicate our findings. Because the sample sizes in ROS/MAP were smaller than in ADNI and AD cases were strongly underrepresented (566 serum samples 11 of which were AD and 111 brains 27 of which were AD), we focused on replicating our key findings related to the association between cognition and the DCA:CA ratio (as proxy for BA processing by the gut microbiome). Here, we had to use global cognition scores where higher values indicate better cognition. Separate linear regression models were used for brain and serum samples. Pearson's correlation coefficient between serum DCA:CA and DCA:CA in 93 matching brain samples was 0.303 (P = .003). In both serum and brain samples, higher levels of DCA:CA were associated with worse cognition (serum: $\beta = -0.06$; P = .011; brain: $\beta = -0.21$; P = .032), confirming our ADNI finding.

3.5. Genetic risk variants for AD in genes related to immune function are associated with bile acid levels

To further evaluate that altered BA profiles in AD are related to processes in the gut microbiome, we investigated

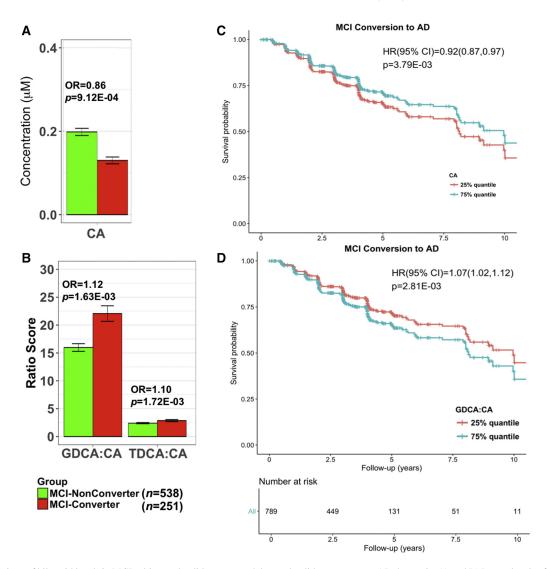


Fig. 4. Comparison of bile acid levels in MCI subjects who did convert and those who did not convert to AD dementia. (A and B) Lower levels of CA and higher levels of two secondary to primary ratios (GDCA:CA, TDCA:CA) were significantly associated with higher odds of converting from MCI to AD. EMCI and LMCI patients who converted to AD dementia in 4 years after baseline were labeled as MCI-converter; nine bile acids and ratios that were significantly dysregulated between CN to AD were assessed; P values were estimated from logistic regression models and adjusted for age, sex, body mass index, and $APOE \ \epsilon 4$ status; the significance level was adjusted for multiple testing according to Bonferroni $0.05/9 = 5.56 \times 10^{-3}$. (C and D) Cox hazards model of the association of conversion from MCI to AD. Red line: first quantile, blue line: third quantile. Analysis was conducted using quantitative values, and stratification by quantiles was used only for graphical representation. Abbreviations: AD, Alzheimer's disease; CA, cholic acid; CN, cognitively normal; EMCI, early mild cognitive impairment; GDCA, glycodeoxycholic acid; LMCI, late mild cognitive impairment; MCI, mild cognitive impairment; TDCA, taurodeoxycholic acid.

if BA profiles were associated with immune-related AD risk genes which may contribute to differences in gut microbiome composition. Using the ADNI (n = 817 with WGS data) and RS (n = 488) cohorts, association of selected BAs in the primary BA pathway (CA, DCA, GDCA, and TDCA) as well as the DCA:CA ratio with the selected genetic risk variants in nine candidate genes with immune-related functions was assessed. In addition, we included associations from a published large cohort-based study [45] to increase sample size. With the exception of rs983392 in MS4A6A, we found nominally significant associations for the candidate variants in all these genes (Supplementary Table 10). Three associations were significant after

Bonferroni correction ($P < 1.1 \times 10^{-3}$) in at least one of the studies: rs616338 (ABI3) and rs190982 (MEF2C) were significantly associated with the DCA:CA ratio and rs11771145 (EPHAI) was significantly linked to both DCA and TDCA.

3.6. Genetic loci associated with DCA may influence susceptibility for AD

To follow up on the hypothesis that elevated DCA levels in AD that are linked to gut dysbiosis are relevant in the pathogenesis of AD, we collected (suggestive) significant genetic associations with DCA levels ($P < 1.0 \times 10^{-5}$) from a

previous study of genetic influences on blood metabolite levels in large population-based cohorts (n~7800) [45]. We then annotated the resulting 13 loci with genetic trait associations, including AD associations from the IGAP study [2], and tried to replicate associations with DCA in ADNI (Supplementary Table 11). Two of the 13 genes, *CYP7A1* and *IMPA2*, also showed association with DCA levels in ADNI subjects. Notably, six of the 13 genes have been previously linked via genetic studies to AD (*ABCA7*) or AD phenotypes, including cognitive decline and CSF protein levels (*LRRC7*, *CYCS*, *GPC6*, *FOXN3*, and *CNTNAP4*).

4. Discussion

In this study, we interrogated a possible role for BA end products of cholesterol metabolism and clearance in cognitive changes in AD. Using stored blood samples from ADNI studies, we established that BA profile is significantly altered in AD patients. We noted a significant decrease in serum levels of a liver-derived primary BA (CA) and an increase in levels of a bacterially produced secondary BAs and their conjugated forms (DCA, GDCA and TDCA, GLCA) in AD patients compared to CN subjects (Table 4, Fig. 1A). Higher levels of secondary conjugated BAs (GDCA, GLCA, and TLCA) were significantly associated with worse cognitive function (ADAS-Cog13; Table 4). In a follow-up study, we illustrate that these changes are also correlated with changes in CSF markers of disease and with brain imaging changes.

To inform about enzymatic activity changes in the liver and the gut, three types of metabolite ratios were evaluated to inform about mechanisms leading to the noted altered BA profile in AD. We found no shift in metabolism between primary and alternative pathways (Fig. 3; no change in CA:CDCA); a significant change in production of secondary BAs via enzymatic activities in the gut microbiome (increased DCA:CA as well as GLCA:CDCA and TLCA:CDCA as proxies for LCA:CDCA) and no change in processes involved in glycine and taurine conjugation of secondary BAs in the liver (no change in GDCA:DCA or TDCA:DCA). The significant increase in ratios of secondary to primary BAs (e.g., DCA:CA; Fig. 3) suggest altered activity of bacterial 7α-dehydroxylases leading to excess production of secondary BAs many of which are cytotoxic [34,60-62]. This indicates potential gut dysbiosis in AD patients possibly caused by enhanced colonization of the large and possibly the small intestine with anaerobic bacteria capable of CA and CDCA 7α-dehydroxylation. Increases in these ratios also significantly correlated with poorer cognition (Table 5). Together, these findings suggest that enzymatic steps in conversion of primary to secondary BAs in the gut might contribute to disease.

We also evaluated effects of BA levels on risk of progression to AD among 789 MCI patients. Lower levels of CA and higher ratio of secondary to primary BAs, GDCA:CA, and

TDCA:CA were significantly associated with risk of developing AD dementia (Fig. 4, Supplementary Table 6).

The increased production of bacterially produced DCA from CA modeled by ratio DCA:CA and its link to cognition was replicated in the independent ROS/MAP cohort. Association of the DCA:CA ratio with disease severity was evaluated separately in 566 serum and 111 brain samples. Because of the small number of AD patients (n = 11, serum n = 27, brains), we used global cognitive scores as an index of disease severity. Most of the BAs primary and bacterially produced secondary were found in the brain. Similar to ADNI findings, an increase in the DCA:CA ratio in both serum and brain were significantly associated with worse cognition. This finding suggests that downstream effects of the gut-directed dysregulation of primary versus secondary BAs are not limited to the periphery but also might affect metabolic homeostasis and/or signaling functions in the human brain.

Earlier smaller studies suggested differences in BA levels in AD [26,38-41]. For example, in a study of 495 plasma metabolites comparing MCI (n = 58) and AD (n = 100) with those of cognitively normal controls (n = 93), levels of DCA, LCA, and GLCA were significantly elevated in the disease state [41]. Mapstone and colleagues [39] identified increased levels of glycoursodeoxycholic acid in subjects likely to develop amnestic MCI or AD within 2 to 3 years compared to controls. In a small pilot study, Marksteiner and colleagues [38] reported increased levels of LCA, GDCA, and GLCA in AD (n = 30) relative to MCI (n = 20). We replicated these findings with the exception of LCA (excluded during QC) and glycoursodeoxycholic acid, which showed only a nonsignificant trend of upregulation in the AD group (P = .054). Marksteiner [38] did not report a significant increase in DCA or decrease in CA which we observed in the ADNI cohort. However, there is a trend in their data to suggest that DCA levels are increased in AD relative to CN. Our analyses build upon these pilot studies to include a large well-characterized cohort with rich clinical, neuroimaging, and genetics data. Our analyses include links to innate immunity-related genes, which was not possible in smaller studies. In addition, we controlled for medication use which is known to significantly affect the gut microbiome and BAs. In our follow-up study, we explore the association of serum BAs with CSF and neuroimaging biomarkers of AD.

Composition and functional changes of the gut microbiome have been implicated in several diseases. Microbiome GWAS revealed that variants in many human genes involved in immunity and gut architecture are associated with an altered gut microbiome composition [63]. Although many factors such as diet can affect the microbial organisms residing in the gut, emerging data support the hypothesis that certain host genetic variants predispose an individual toward microbiome dysbiosis and this can be linked to disorders of metabolism and immunity such as type 2 diabetes mellitus, obesity, and autism [63].

Accumulating evidence links dysregulation of the immune system to AD pathology. In particular, genetic association studies in AD have robustly identified several genetic risk variants in immune-related genes [2,59]. Using the ADNI and RS cohorts, we investigated the association of BA profiles of CN subjects with genetic variants in nine AD-related and innate immunity genes. Eight genetic variants were associated with selected BA levels at nominal significance (Supplementary Table 10). Three of these associations were significant after Bonferroni correction, with rs616338 (ABI3) and rs190982 (MEF2C) associated with the DCA:CA ratio, and rs11771145 (EPHA1) linked to both DCA and TDCA. The association of the BAs to AD genes suggests that these immune-related genes may influence the risk of AD through BA metabolism or changes in the gut microbiome. Interestingly, both ABI3 and MEF2C are thought to be involved in immune reactions to proinflammatory stimuli that are partially secreted by microbes [64,65]. The link to the DCA:CA ratio may thus mirror differences in gut microbiome composition due to altered immune response in AD, providing a mechanistic hypothesis for our findings. The function of EPHA1 is not well understood, but it has been hypothesized that when activated, this receptor may affect the integrity of the blood-brain barrier (BBB) [66]. Its association with levels of DCA is intriguing as DCA is known to be cytotoxic and can disrupt the BBB and then enter the brain [28]. rs11771145 is associated with gene expression levels of EPHA1 [55], and as DCA is not known to be produced by human metabolism, changed expression and activity of EPHA1 may be related to DCA-mediated cytotoxic effects.

Using an established atlas of genetic influences on human blood metabolites [45], we further investigated a potential cytotoxic role of DCA. For almost half of the 13 identified loci, we found genetic evidence for involvement in ADlinked complex traits (Supplementary Table 11). In particular, ABCA7 is an AD risk gene replicated in several genetic studies [67,68]. Five additional genes (LRRC7, CYCS, GPC6, FOXN3, and CNTNAP4) genetically influence AD phenotypes, including cognitive decline and CSF markers. While it remains speculative if and how these genes interact with DCA to contribute to AD risk, it is intriguing that we identified ABCA7 by screening for associations with DCA levels. ABCA7 is highly expressed in the brain, and functions in the efflux of lipids, including cholesterol, from cells. Because of the structural similarity of DCA and cholesterol, we hypothesize that ABCA7 may be able to also transport this BA, reconciling metabolomics findings via a functional hypothesis to a risk gene for AD. The findings that BA levels are regulated by AD-related genes might provide new mechanistic insights.

There is growing support for strong connections between the intestinal environment, with its diverse microbial composition and activity, and the functions of the central nervous system. The "gut-brain metabolic axis" facilitates bidirectional chemical communication between the central and enteric nervous systems through mechanisms just starting to be defined [7–9]. Such a metabolic axis is thought to be involved in the regulation of multiple host metabolic pathways in which levels of hormones, neurotransmitters, amines, GABA, short-chain fatty acids, lipid metabolites, and others are regulated by gut microbiome activity [12]. Changes in the composition of intestinal bacterial populations are associated with a wide array of neurological and neurodevelopmental disorders including multiple sclerosis, autism, depression, schizophrenia, and Parkinson's disease [69–71]. In addition, increasing evidence suggests that liver disease may impact cognitive functions and contribute to AD [72].

Our findings suggest novel metabolic links in AD where BAs represent a component of the gut-liver-brain axis that relates to cognition. We hypothesize that interconnected immune and gut microbiome dysregulation leads to increase in production of cytotoxic secondary BAs like DCA and its derivatives and these can modulate the BBB and build up in the brain leading to impaired metabolic functions mediated by their receptors and targets. Such dysregulation includes cholesterol and glucose homeostasis.

It is of interest that BAs are ligands for nuclear receptors including FXR, LXRs among others and they acts synergistically as metabolic sensors to regulate energy homeostasis [73,74] peripherally and might also propagate their effects to the brain. Interestingly, levels of four BAs produced by the gut microbiome and those we show to be significantly correlated with disease status and cognition (DCA, GLCA, TLCA, TDCA) are hydrophobic and cytotoxic [34,35,75,76]. Cell lines, animal models, and human studies suggest that levels of such BAs, particularly DCA, lead to a disruption of mitochondrial membranes resulting in increased reactive oxygen species, markers of inflammation, and apoptosis as well as decreases in cell viability and DNA synthesis [34,35,77]. Studies in rodents with deuterium-labeled DCA demonstrated that DCA crosses the BBB and increases its permeability [27,29]. Increased amounts of secondary BAs in blood may enter the brain through induced permeability of the BBB, affecting brain physiology and metabolism [28]. Several studies in human and animal brains also revealed that the full panel of BAs is found in the brain [24-27], but it is unclear whether this is due to transport from the periphery, from local synthesis, or both. The function of these BAs in the brain remains poorly defined with some support for them acting as neurosteroids [78].

BA levels and the gut microbiome influence each other, where bile salt hydrolase–rich bacteria readily modify the BA profile while, on the other hand, intestinal BAs control the growth and maintenance of commensal bacteria, maintain barrier integrity, and modulate the immune system [79–82]. Such changes might impact brain functions. Significant data support a role for cholesterol metabolism in the pathogenesis of AD including large genetic studies. Cholesterol homeostasis is regulated in part by the gut microbiome suggesting that cholesterol intermediates

including those produced by gut might present as one gutbrain axis of communication that needs to be further investigated in human and animal studies.

4.1. Limitations

This is an observational study, the results of which may contain confounding biases. For example, diet, lifestyle, exposome, and other factors may contribute to changes in the gut. It remains unclear how these important factors are related to AD pathogenesis and whether the observed differences we note are causes or consequences of disease. Further studies of metabolic changes in normal aging are required to help define which aspects of BA metabolism might be related to disease versus normal aging. Fecal material was not collected in the ADNI cohorts or other large studies therefore precluding a direct analysis of microbiota changes across the trajectory of disease. Such studies have just been initiated. Use of medications was extensively evaluated as a possible confound (Supplementary Methods and Tables 7-9), and our key findings remained after controlling for medication use but larger studies need to further evaluate the effect of these medications. Additional experimental studies are needed to more fully define the expression of BAs and their receptors in the brain and the mechanistic roles of BAs in the development of AD. The impact of BAs on FXR, TGR5, vitamin, and hormone receptors in the brain and the signaling pathways impacted are currently unclear. It is important to evaluate in other large community studies the generalizability of our findings. The genetic links need to be tested in large populations.

Longitudinal studies covering presymptomatic stages are needed to establish the influence of immune changes on gut microbiome composition and activity in AD patients and the impact of this on BAs and cholesterol homeostasis. Tracking earliest changes in BA and other gut-derived metabolites might provide insights into causality. Labeling studies are needed to evaluate if BAs cross the BBB and build up in brain with further elucidation of their signaling and regulatory functions centrally. However, we cannot exclude the possibility that changes in the brain during disease can also impact the gut and liver, and hence, some of our findings might be brain derived.

5. Conclusions

In summary, there is evidence of a relationship among the intestinal BA profile, gut microbial composition and/or activity, innate immunity, and genetic variants implicated in AD. When disrupted, BAs may contribute to cognitive changes, highlighting the importance of cholesterol clearance and its regulation in AD. Disorders in BA metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes, which are all associated with risk of cognitive decline, directly or indirectly. Our results lend support to this

relationship in the context of AD and cohorts at risk for AD. Our evolving understanding of the gut microbiome's role in aging and in central nervous system diseases and their progression could open potential new hypotheses in the field, regardless of whether the role is ultimately found to be causative, consequence, or contributory. The role of the gut microbiome in AD needs to be further investigated along with the emerging links between central and peripheral metabolic failures that might contribute to brain health and disease during aging.

Acknowledgments

Authors' contributions: MahmoudianDehkordi, Arnold, and Nho had full access to all ADNI data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Ahmad had access to Rotterdam data and conducted analyses of the Rotterdam study. Statistical analyses were also included by Toledo, Arnold, Ahmad, Bhattacharyya, Jia, Rotroff, Jack, Xie, and Kastenmüller. Data management and medication term mapping were carried out by Tenenbaum and Blach. Concept and design of the article were performed by Kaddurah-Daouk lead concept and design team that included all coauthors. Data analysis and quality control of metabolomic data were performed by Schafferer, Klein, Koal, St. John Williams, Thompson, Xie, and Moseley. Acquisition, quality control, and processing of metabolomic data were carried out by St. John Williams, Thompson, Xie, and Moseley. MahmoudianDehkordi, Nho, Arnold, Louie, Kastenmüller, Kueider-Paisley, and Kaddurah-Daouk helped in drafting of the article. Biochemical, genomics, and medications integration was carried out by Kastenmüller, Baillie, Han, Risacher, Arnold, and Nho. Data deposition was done by Alzheimer's Disease Neuroimaging Initiative (see note). Harmonization of methods was carried out by Alzheimer's Disease Metabolomics Consortium. Technical, bibliographic research, and/or material support was provided by Louie. Biochemical interpretation was done by Baillie, Han, Kaddurah-Daouk, Jia, Bhattacharyya, and Arnold. Critical revision of the article for important intellectual was performed by Saykin, Doraiswamy, content Kastenmüller, van Duijn, and Kaddurah-Daouk. Funding was obtained by Kaddurah-Daouk. Supervision was done by Motsinger-Reif, Trojanowski, Shaw, Weiner, Doraiswamy, Saykin, Kastenmüller, and Kaddurah-Daouk. The Alzheimer's Disease Metabolomics Consortium (ADMC): A complete listing of ADMC investigators can be found at https://sites.duke.edu/adnimetab/who-we-are/. The Alzheimer's Disease Neuroimaging Initiative (ADNI): Data used in the preparation of this article were obtained from the ADNI database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Funding for ADMC (Alzheimer's Disease Metabolomics Consortium, led by Rima Kaddurah-Daouk at Duke University) was provided by the National Institute on Aging grant R01AG046171, a component of the Accelerated Medicines Partnership for AD (AMP-AD) Target Discovery and Preclinical Validation Project (https://www.nia.nih.gov/research/dn/amp-ad-target-discovery-and-preclinical-validation-project) and the National Institute on Aging grant RF1 AG0151550, a component of the M²OVE-AD Consortium (Molecular Mechanisms of the Vascular Etiology of AD–Consortium (https://www.nia.nih.gov/news/decoding-molecular-ties-between-vascular-disease-and-alzheimers).

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

The Religious Orders and the Rush Memory and Aging studies were supported by the National Institute on Aging grants P30AG10161, R01AG15819, R01AG17917, and U01AG46152.

The work of various Consortium Investigators is also supported by various NIA grants (U01AG024904-09S4, P50NS053488, R01AG19771, P30AG10133, P30AG 10124, K01AG049050, R03AG054936), the National Library of Medicine (R01LM011360, R00LM011384, R01 LM012535), and the National Institute of Biomedical Imaging and Bioengineering (R01EB022574). Additional

support came from Helmholtz Zentrum, the Alzheimer's Association, the Indiana Clinical and Translational Science Institute, and the Indiana University–IU Health Strategic Neuroscience Research Initiative.

The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study (RS-I, RS-III, RS-III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organization of Scientific Research NWO Investments (Project number 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/ Netherlands Organization for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project number 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, MSc, for the creation and analysis of imputed data.

The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the article; and decision to submit the article for publication.

The authors are grateful to Lisa Howerton for administrative support and the numerous ADNI study volunteers and their families.

An email with links to the Authorship Form will be sent to authors for completion after manuscripts have been submitted.

J.B.T. reports investigator-initiated research support from Eli Lilly unrelated to the work reported here. S.S., S.K, and T.K. are employed by Biocrates Life Sciences AG. These authors have no other financial relationships relevant to this article to disclose. J.Q.T. may accrue revenue in the future on patents submitted by the University of Pennsylvania wherein he is a coinventor and he received revenue from the sale of Avid to Eli Lily as a coinventor on imaging-related patents submitted by the University of Pennsylvania. L.M.S. receives research funding from NIH (U01 AG024904; R01 MH 098260; R01 AG 046171; 1RF AG 051550) and MJFox Foundation for PD Research and is a consultant for Eli Lilly, Novartis, and Roche; he provides QC oversight for the Roche Elecsys immunoassay as part of responsibilities for the

ADNI3 study. A.J.S. reports investigator-initiated research support from Eli Lilly unrelated to the work reported here. He has received consulting fees and travel expenses from Eli Lilly and Siemens Healthcare and is a consultant to Arkley BioTek. He also receives support from Springer publishing as an editor-in-chief of Brain Imaging and Behavior. M.W.W. reports stock/stock options from Elan, Synarc, travel expenses from Novartis, Tohoku University, Fundacio Ace, Travel eDreams, MCI Group, NSAS, Danone Trading, ANT Congress, NeuroVigil, CHRU-Hopital Roger Salengro, Siemens, AstraZeneca, Geneva University Hospitals, Lilly, University of California, San Diego-ADNI, Paris University, Institut Catala de Neurociencies Aplicades, University of New Mexico School of Medicine, Ipsen, Clinical Trials on Alzheimer's Disease, Pfizer, AD PD meeting. P.M.D. has received research grants and advisory/speaking fees from several companies for other projects, and he owns stock in several companies. Full disclosures will be made through the IJCME form. R.K.D. is inventor on key patents in the field of metabolomics including applications for Alzheimer disease. All other authors report no disclosures.

Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jalz.2018.07.217.

RESEARCH IN CONTEXT

- Systematic review: The authors reviewed the literature using PubMed, Google, Web of Science, Medline, Research Gate and through meeting abstracts and presentations. While the role of the gut microbiome in AD is not yet widely studied, there are several recent publications implicating the gut's role in other neuropsychiatric diseases. These relevant citations are appropriately cited.
- Interpretation: We report correlations between secondary gut microbiome-produced BA and cognitive decline in AD with innate immunity genes contributing to altered BA profile. Our findings highlight a possible role for cholesterol clearance and gut microbiome in disease mechanism.
- 3. Future directions: Our evolving understanding of the gut microbiome's role in aging and related diseases could open new hypotheses for AD, regardless of whether the role is ultimately found to be causative, consequence, or contributory. These findings warrant further investigation of the possible role of gut-liverbrain axis in AD pathogenesis.

References

- [1] Alzheimer's A. 2017 Alzheimer's disease facts and figures. Alzheimer's & Dementia. J Alzheimer's Assoc 2017;13:325–73.
- [2] Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013; 45:1452–8.
- [3] Jones L, Lambert J-C, Wang L-S, Choi S-H, Harold D, Vedernikov A, et al. Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimers Dement 2015;11:658–71.
- [4] Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015;17:565–76.
- [5] Wu S-C, Cao Z-S, Chang K-M, Juang J-L. Intestinal microbial dysbiosis aggravates the progression of Alzheimer's disease in Drosophila. Nat Commun 2017;8:24.
- [6] Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med 2016;8:340ra72.
- [7] Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 2016;158:52–62.
- [8] Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J Neurogastroenterology Motil 2016;22:201–12.
- [9] Tognini P. Gut Microbiota: A Potential Regulator of Neurodevelopment. Front Cell Neurosci 2017;11:25.
- [10] Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: A review. Ann Neurol 2017;81:369–82.
- [11] Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 2012;16:559–64.
- [12] Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science 2012; 336:1262–7.
- [13] Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell 2016;167:1469–1480 e12.
- [14] Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer's disease. Sci Rep 2017;7:10411.
- [15] Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 2017; 7:41802.
- [16] Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017;49:60–8.
- [17] Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2015;6:35284–303.
- [18] Di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci 2011;12:284–96.
- [19] Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al. Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias. PLoS Genet 2014;10:e1004606.

- [20] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006;47:241–59.
- [21] Donova MV. Transformation of steroids by actinobacteria: a review. Prikladnaia biokhimiia i mikrobiologiia 2007;43:5–18.
- [22] Islam KBMS, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, et al. Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology 2011;141:1773–81.
- [23] Camilleri M, Gores GJ. Therapeutic targeting of bile acids. Am J Physiol Gastrointest Liver Physiol 2015;309:G209–15.
- [24] Mano N, Goto T, Uchida M, Nishimura K, Ando M, Kobayashi N, et al. Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J lipid Res 2004;45:295–300.
- [25] Naqvi SH, Herndon BL, Kelley MT, Bleisch V, Aexel RT, Nicholas HJ. Detection of monohydroxy "bile" acids in the brains of guinea pigs afflicted with experimental allergic encephalomyelitis. J lipid Res 1969; 10:115–20.
- [26] Pan X, Elliott CT, McGuinness B, Passmore P, Kehoe PG, Holscher C, et al. Metabolomic profiling of Bile acids in clinical and experimental samples of Alzheimer's disease. Metabolites 2017;7.
- [27] Higashi T, Watanabe S, Tomaru K, Yamazaki W, Yoshizawa K, Ogawa S, et al. Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids 2017; 125:107–13
- [28] Quinn M, McMillin M, Galindo C, Frampton G, Pae HY, DeMorrow S. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis 2014; 46:527–34
- [29] Lalic-Popovic M, Vasovic V, Milijasevic B, Golocorbin-Kon S, Al-Salami H, Mikov M. Deoxycholic Acid as a Modifier of the Permeation of Gliclazide through the Blood Brain Barrier of a Rat. J Diabetes Res 2013;2013;598603.
- [30] Cecilia MPR, Stephen RS, Susana S, Andrew WG, Cheryle L-S, Walter CL, et al. Neuroprotection by a Bile Acid in an Acute Stroke Model in the Rat. J Cereb Blood Flow Metab 2002;22:463–71.
- [31] Dionisio PA, Amaral JD, Ribeiro MF, Lo AC, D'Hooge R, Rodrigues CMP. Amyloid-beta pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset. Neurobiol Aging 2015;36:228–40.
- [32] Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, et al. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-beta deposition in APP/PS1 mice. Mol Neurobiol 2012;45:440–54.
- [33] Paolini M, Pozzetti L, Montagnani M, Potenza G, Sabatini L, Antelli A, et al. Ursodeoxycholic acid (UDCA) prevents DCA effects on male mouse liver via up-regulation of CYP [correction of CXP] and preservation of BSEP activities. Hepatology 2002;36:305–14.
- [34] Ignacio Barrasa J, Olmo N, Perez-Ramos P, Santiago-Gomez A, Lecona E, Turnay J, et al. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 2011;16:1054–67.
- [35] Martinez-Diez MC, Serrano MA, Monte MJ, Marin JJ. Comparison of the effects of bile acids on cell viability and DNA synthesis by rat hepatocytes in primary culture. Biochim Biophys Acta 2000; 1500:153–60.
- [36] Ramalho RM, Viana RJS, Low WC, Steer CJ, Rodrigues CMP. Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer's disease. Trends Molecular Medicine 2008;14:54–62.
- [37] Schulz S, Schmitt S, Wimmer R, Aichler M, Eisenhofer S, Lichtmannegger J, et al. Progressive stages of mitochondrial destruction caused by cell toxic bile salts. Biochim Biophys Acta 2013; 1828:2121–33.
- [38] Marksteiner J, Blasko I, Kemmler G, Koal T, Humpel C. Bile acid quantification of 20 plasma metabolites identifies lithocholic acid as a putative biomarker in Alzheimer's disease. Metabolomics 2018; 14:1.

- [39] Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 2014;20:415–8.
- [40] Greenberg N, Grassano A, Thambisetty M, Lovestone S, Legido-Quigley C. A proposed metabolic strategy for monitoring disease progression in Alzheimer's disease. Electrophoresis 2009;30:1235–9.
- [41] Olazaran J, Gil-de-Gomez L, Rodriguez-Martin A, Valenti-Soler M, Frades-Payo B, Marin-Munoz J, et al. A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer's disease. J Alzheimer's Dis 2015;45:1157–73.
- [42] Bennett DA, Schneider JA, Arvanitakis Z, Wilson RS. Overview and findings from the religious orders study. Curr Alzheimer Res 2012; 9:628–45.
- [43] Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the rush Memory and Aging Project. Curr Alzheimer Res 2012;9:646–63.
- [44] Hofman A, Brusselle GG, Darwish Murad S, van Duijn CM, Franco OH, Goedegebure A, et al. The Rotterdam Study: 2016 objectives and design update. Eur J Epidemiol 2015;30:661–708.
- [45] Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet 2014;46:543–50.
- [46] Xie G, Zhong W, Li H, Li Q, Qiu Y, Zheng X, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J 2013;27:3583–93.
- [47] St John-Williams L, Blach C, Toledo JB, Rotroff DM, Kim S, Klavins K, et al. Targeted metabolomics and medication classification data from participants in the ADNI1 cohort. Sci Data 2017; 4:170140.
- [48] Wilson R, Evans D, Bienias J, De Leon CM, Schneider J, Bennett D. Proneness to psychological distress is associated with risk of Alzheimer's disease. Neurology 2003;61:1479–85.
- [49] Wilson RS, De Leon CFM, Barnes LL, Schneider JA, Bienias JL, Evans DA, et al. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 2002;287:742–8.
- [50] Wilson RS, Bienias JL, Evans DA, Bennett DA. Religious Orders Study: overview and change in cognitive and motor speed. Aging Neuropsychol Cogn 2004;11:280–303.
- [51] Wilson RS, Barnes LL, Krueger KR, Hoganson G, Bienias JL, Bennett DA. Early and late life cognitive activity and cognitive systems in old age. J Int Neuropsychological Soc 2005;11:400–7.
- [52] Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, et al. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimer's Demen J Alzheimer's Assoc 2015;11:792–814.
- [53] McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 2016;48:1279–83.
- [54] Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet 2016;48:1284–7.
- [55] Arnold M, Raffler J, Pfeufer A, Suhre K, Kastenmuller G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 2015;31:1334–6.
- [56] MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 2017;45:D896–901.
- [57] Guerreiro R, Bras J, Hardy J. SnapShot: genetics of Alzheimer's disease. Cell 2013;155:968- e1.
- [58] Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, Pocock JM. Microglial genes regulating neuroinflammation in the progression of Alzheimer's disease. Curr Opin Neurobiol 2016;36:74–81.
- [59] Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet 2017;49:1373–84.

- [60] Rolo AP, Palmeira CM, Wallace KB. Mitochondrially mediated synergistic cell killing by bile acids. Biochim Biophys Acta (bba) - Mol Basis Dis 2003:1637:127–32.
- [61] Shivaram KN, Winklhofer-Roob BM, Straka MS, Devereaux MW, Everson G, Mierau GW, et al. The effect of idebenone, a coenzyme Q analogue, on hydrophobic bile acid toxicity to isolated rat hepatocytes and hepatic mitochondria. Free Radic Biol Med 1998; 25:480–92.
- [62] Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998;101:2790–9.
- [63] Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet 2017;18:690.
- [64] Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997;386:296–9.
- [65] Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 2014;343:1246949.
- [66] Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer's disease. J Alzheimers Dis 2015;43:725–38.
- [67] Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/ MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 2011;43:429–35.
- [68] Le Guennec K, Nicolas G, Quenez O, Charbonnier C, Wallon D, Bellenguez C, et al. ABCA7 rare variants and Alzheimer disease risk. Neurology 2016;86:2134–7.
- [69] Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014; 128:805–20.
- [70] Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016;7:12015.

- [71] Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 2017; 595:489–503.
- [72] Kim DG, Krenz A, Toussaint LE, Maurer KJ, Robinson SA, Yan A, et al. Non-alcoholic fatty liver disease induces signs of Alzheimer's disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J Neuroinflammation 2016;13:1.
- [73] Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 2012;13:213–24.
- [74] Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014;11:55–67.
- [75] Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. The J Clin Invest 1999;103:137–45.
- [76] Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol 2009;15:1677–89.
- [77] Sousa T, Castro RE, Pinto SN, Coutinho A, Lucas SD, Moreira R, et al. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties. J lipid Res 2015;56:2158–71.
- [78] Keitel V, Gorg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 2010;58:1794–805.
- [79] Stenman LK, Holma R, Eggert A, Korpela R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 2013; 304:29.
- [80] Shapiro H, Thaiss CA, Levy M, Elinav E. The cross talk between microbiota and the immune system: metabolites take center stage. Curr Opin Immunol 2014;30:54–62.
- [81] Baptissart M, Vega A, Maqdasy S, Caira F, Baron S, Lobaccaro JM, et al. Bile acids: from digestion to cancers. Biochimie 2013; 95:504–17.
- [82] Allegretti JR, Kearney S, Li N, Bogart E, Bullock K, Gerber GK, et al. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther 2016;43:1142–53.